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TIGHT AND UNTIGHT TRIANGULATIONS

OF SURFACES BY COMPLETE GRAPHS

Jorge Luis Arocha, Javier Bracho and Victor Neumann-Lara

Abstract. Triangular embeddings of complete graphs into surfaces are studied through the

notion of tightness which is a natural combinatorial generalization of connectedness for graphs.

By means of a construction which \couples" two such surfaces to produce a new one, the exis-

tence of untight complete triangular embeddings is proved and the known archive of tight ones

is broadened. In particular, K30 admits a tight and an untight triangular embedding into the

same surface. Therefore, complete graphs may triangulate the same surface in nonisomorphic

ways.

1. Tightness and Triangular Embeddings of Complete Graphs.

Embeddings of the complete graph Kn into surfaces have been intriguing to graph theorists

for over a century. It took that time to produce an example of minimal genus for each

order n as expected by Heawood, see [4]. Here, we are mainly interested in triangular

embeddings of Kn, which we also refer to as complete triangulated surfaces or complete

triangular embeddings. What is essentially known is that with the remarkable exception of

K7 which is not embeddable in the Klein bottle, there exist complete triangular embeddings

whenever the \numbers coming from Euler's formula permit". But for a given admissible

n, only one such embedding has been constructed, see [4]. The problem of enumerating

them remains wide open, see [3].

Our main achievement in classic embedding theory is the coupling construction. For-

mally, it depends only on the basic de�nition (1.2), and thus, after the remark following

(1.2) the reader may go to Section 4 where this construction is presented. It couples the

combinatorial information of two complete triangulated surfaces with boundary of order n

(3-chains according to (1.2)) to produce a complete triangulated closed surface of order 2n



(a 3-cycle according to (1.2)). It yields many triangular embeddings of complete graphs

into non-orientable surfaces, which should be new, for the construction does not depend

on congruence (mod 6) as Ringel's ones do [5]. Our construction may be seen as an op-

eration among complete triangular embeddings, and it reveals some of the structure, far

from being understood, of such triangulations of surfaces.

Our purpose in this work is to study triangular embeddings ofKn into surfaces through

the notion of tightness, introduced in [1] for uniform hypergraphs. On one hand, in�nite

families of tight and untight surfaces are constructed (Theorems 1 and 2). And on the

other hand, tightness invariants are used to di�erentiate triangular embeddings of Kn into

the same closed surface {three for n = 16, see remark after Theorem 3.6; and two for

n = 30, see remark after Theorem 2. The smallest n for which there exist non-isomorphic

triangular embeddings of Kn into the same closed surface is 9 [6].

In this paper we shall deal with 3-graphs {that is, uniform hypergraphs of rank 3.

After the basic general de�nitions and observations, triangulations of surfaces by complete

graphs shall become our particular case of interest.

A 3-graph H is de�ned over a �nite set of vertices V = H(0) by a �xed set H(3) of

subsets of order 3, called the 3-edges of H. As usual, a 2-graph (or simply a graph) G

consists of a vertex set G(0) together with a �xed 2-edge (or edge) set G(2). (See Section

2 for a comment on our conventions on such superscripts).

(1.1) A 3-graph is called tight if every nondegenerate 3-partition of its vertices has a

transversal 3-edge; that is, for every surjective function f :H(0) ! �3 = f1; 2; 3g there

exists � 2 H(3) such that f(�) = �3.

Observe that the de�nition of connectedness for graphs is obtained from (1.1) by

replacing 3 with 2. Thus, tightness is a generalization of connectedness.

Let u be a vertex of the 3-graph H. The trace T (u) := TH (u) of u in H is the graph

de�ned by

T (u)(0) = H(0)
� fug = V � fug;

vw 2 T (u)(2) () uvw 2 H(3):
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A necessary condition forH to be tight is that every such trace must be connected (compare

with (2.2)). Otherwise, a 2-partition disconnecting T (u) together with fug proves H to

be untight. Observe also that if H is tight, then every pair of vertices lies in some 3-

edge because a connected trace has no isolated points. (Of course, we assume here that a

3-graph has order at least 3.)

Now we de�ne the main objects to be considered.

(1.2) A 3-graph H is called a 3-cycle (respectively, a 3-chain) if, for every vertex u 2 V ,

its trace TH(u) is a cycle (respectively, a chain {this is, a path).

Remark. 3-cycles correspond precisely to triangular embeddings of complete graphs into

closed surfaces. Indeed, the trace of a vertex is a graph de�ned over all the other vertices,

thus, when the 1-skeleton of the associated 2-dimensional simplicial complex is a complete

graph, the traces correspond to the usual simplicial links. Similarly, 3-chains correspond

to triangular embeddings of complete graphs into surfaces with (not necessarily connected)

boundary, in such a way that the boundary contains every vertex and is made up of edges,

namely, the edges that join each vertex to the endpoints of its trace.

Examples of 3-cycles of any order n � 0; 1 (mod 3) can be found in the masterful

work on Heawood's Conjecture by Ringel et al, [4]. (To see that there are no 3-cycles

of order n � 2 (mod 3), count the number of 3-edges from the trace information.) And

from these examples, 3-chains of any order n � 0; 2 (mod 3) are obtained by deleting a

vertex (clearly, if H is a 3-cycle then H � v is a 3-chain for any vertex v). But it is not

known whether these explicit examples are tight or not, except those of small order whose

tightness can be established with the help of a computer.

3-chains arose naturally from the study of minimum tight 3-graphs [1]. A tight 3-

graph is minimum if it has the minimum size (that is, number of 3-edges) among the tight

3-graphs of the same order. If H is a tight 3-graph of order n, then each trace has at least

n� 2 edges because it is connected. Thus, the size of H is at least dn(n� 2)=3e. In [1] it

was conjectured that minimum tight 3-graphs reach this lower bound, and the �rst in�nite

family of examples was presented:
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Family 1: Prime surfaces. Let p � 7 be a prime number. Consider the 3-graph Bp,

whose vertex set is the multiplicative group Z�p = Zp�f0g, and having a 3-edge xyz 2 B
(3)
p

whenever x+ y = z. Clearly, Z�p acts on Bp.

Let Lp be the quotient 3-graph Lp = Bp=f�1; 1g, whose vertices are the pairs [[x]] =

fx;�xg; x = 1; 2; : : : ; (p � 1)=2.

Lp is easily seen to be a 3-chain. Indeed, observe that T ([[1]]) is the chain [[2]]; [[3]]; � � � ;

[[(p� 1)=2]], and then the multiplicative action of Z�p on Lp proves that all the other traces

are also chains. Furthermore, Lp is tight (see [1]).

The main result of this paper is a construction which produces a 3-cycle eH of order

2n out of a 3-chain H of order n. By applying it to the 3-chains of Family 1, we shall

establish the following existence theorems, which are best stated after a de�nition.

(1.3) A prime number p is called connected if, within Z�p, f2
kgk�0 is transversal to the

partition f[[x]]g
(p�1)=2
x=1 ; or equivalently, if the subgroup generated by 2 in Z�p acts transitively

on Lp.

Theorem 1. There exist tight 3-cycles of order (p + 1)=2 and p � 1 for all connected

primes p � 7.

Theorem 2. There exist untight 3-cycles of order 2k(p � 3) + 2 (and therefore, untight

3-chains of order 2k(p� 3) + 1), for all primes p � 17 that are not connected, and k � 0.

Remark. Note that 30 = (59 + 1)=2 = 2(17� 3) + 2 is the smallest order satisfying both

of the theorems. Thus there exist two nonisomorphic triangular embeddings of K30 in

the same closed surface (which is non-orientable because its Euler Characteristic, �115, is

odd).

The proofs of these theorems are completed in Section 4. Section 2 introduces basic

elements of tightness theory, relating them to surfaces. Section 3 provides the motivation

for the \coupling" construction, which we came across when searching for an untight 3-

cycle. It is proved there that the smallest examples of untight 3-cycles have order 16; thus,

the least order of Theorem 2 is best possible for 3-cycles. We do not know, however, if
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there are untight 3-chains of order 14. Finally, in Section 5, we briey address the question

of orientability.

2. Minimal 2-tightness.

We start this section introducing terminology and reviewing basic facts. Although the

main ideas follow [1], the generality and emphasis vary. Then, a classic proof of Sperner's

Lemma, see [2], is used for a tightness Theorem.

Given a set V , and k � 1, let V (k) denote the set of all k-sets (sets of order k) of V .

A k-graph H is a pair (V;H(k)), where H(k) is a subset of V (k); V and H(k) are the set of

vertices of H and the set of k-edges of H, respectively. The vertex set of a k-graph H will

also be denoted H(0). This convention proves convenient for de�nitions, and is necessary

for 1-graphs (sets with a distinguished subset).

By a coloring of a k-graph H, we mean a map from its vertex set H(0) to some color

set. And we will emphasize a k-coloring if it goes onto a set of order k. A k-edge is said

to be k-colored or heterochromatic if its vertices obtain mutually di�erent colors.

(2.1) A k-graph is called r-tight if every k-coloring has at least r k-colored k-edges.

Observe that tightness, as de�ned in (1.1) and for later usage, corresponds precisely

to 1-tightness. And observe also that for graphs (k = 2), r-tightness corresponds to the

classic notion of r-edge-connectivity.

In Section 1 we introduced the trace of single vertices in 3-graphs. We shall now

extend the scope of this term to arbitrary subsets of the vertex set in order to characterize

r-tightness.

Let H be a given k-graph on the vertex set V . Let U be any proper subset of V . The

trace T (U) := TH (U) of U in H is the (k� 1)-graph with vertex set T (U)(0) = V �U and

edge set:

T (U)(k�1) = f� 2 (V � U)(k�1) : 9 u 2 U for which fug [ � 2 H(k)
g:

We will regard T (U) as a multi-(k � 1)-graph, assigning to each (k � 1)-edge � 2

T (U)(k�1) the weight (or multiplicity) w(�) = #fu 2 U : fug [ � 2 H(k) g. If in the
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de�nition of r-tightness one counts the weights in the obvious manner, we have a general

analog of the Basic Lemma [1].

Lemma 2.2. A k-graph H is r-tight if and only if all of its weighted traces are r-tight.

Proof. Let a k-coloring of H, f :V ! f1; : : : ; kg, be given. Consider Vk = f�1(k), and

observe that the number of k-colored k-edges of H correspond precisely to the sum of

weights of (k� 1)-colored (k� 1)-edges of T (Vk) with the obvious restricted coloring. The

lemma easily follows from this fact.

From now on we consider the case k = 3.

The case r = 1 was studied in [1]. Analogously, for r = 2 the Basic Lemma gives us a

lower bound on the size of a 2-tight 3-graph H of order n. Indeed, since the minimum 2-

tight 2-graphs are cycles, then each vertex ofH lies in at least (n�1) 3-edges (corresponding

to the 2-edges of its trace). Thus H has at least dn(n� 1)=3e 3-edges.

Conjecture 2.3. For every n � 4, and n � 0; 1 (mod 3), there exist 2-tight 3-graphs of

order n and size n(n� 1)=3.

This conjecture clearly leads to the study of 3-cycles (recall de�nition (1.2)) because

the one-vertex traces must be minimum 2-tight graphs (i.e., cycles). The problem, ac-

cording to the Basic Lemma, is that all of the higher order traces of a 3-cycle should be

also checked to be 2-tight. Remarkably, their surface structure reduces this \checking" to

simple tightness, or connectedness, for higher order traces:

Theorem 2.4. If a 3-cycle is 1-tight then it is 2-tight.

Proof. Let H = (V;H(3)) be a 3-cycle. Consider the dual graph of H: let D (= D(H))

be the graph with vertex set H(3) (that is, D(0) = H(3)), and with an edge �� whenever

#(� \ �) = 2. Because H is a 3-cycle, we have that D is a cubic (regular of degree 3)

graph, and the function:
D(2)

�! V (2)

�� 7�! � \ �
(2:5)

is a bijection.
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Now, suppose f :V ! � = f0; 1; 2g is a given 3-coloring of H. Let Df be the spanning

subgraph of D with an edge �� 2 D
(2)
f � D(2) if and only if f(� \ �) = f0; 1g (any other

pair of colors serves as well). Observe that a vertex � of Df has degree 1 if and only if

the 3-edge � is heterochromatic (otherwise it has degree 0 or 2). Since the number of odd

degree vertices in a graph is even, then, whenever f yields a heterochromatic 3-edge, it

produces at least one more such a 3-edge, and the theorem follows.

This Theorem is merely an instance of how Sperner's Lemma can be generalized from

the disk to more general triangulated surfaces with colorings; the proof given here follows

[2]. For our present purposes, it establishes Conjecture 2.3 a�rmatively for n � 15 and

n � 0; 1 (mod 3), (Theorem 3.6), and for n = p � 1; (p + 1)=2 with p a connected prime

(Theorem 1).

3. The structure of untight 3-cycles.

Let H be a 3-cycle over the vertex set V of order n. Suppose H is untight. Then there

exists an untight coloring of H, that is, a 3-coloring f :V ! � = f0; 1; 2g without a

heterochromatic 3-edge. Such a coloring f , to be �xed hereafter, is equivalent to the

partition fV0; V1; V2g of V with Vi = f�1(i), which has no transversal 3-edge.

Let ni = #Vi; so that
P

2

i=0
ni = n. Clearly we may assume that

n0 � n1 � n2 ; (3:1)

and we shall call this sequence the type of the untight coloring (or partition). With the

above notation and assumptions, we now prove some constraints on the type.

Lemma 3.2. n0 � 3 :

Proof. It su�ces to see that all two-vertex traces of the 3-cycle H are connected. Consider

a pair of vertices fu; vg, and observe that T (u)� v � T (fu; vg). Since T (u)� v is a chain

(it is a cycle minus a vertex) and it spans T (fu; vg) (they have the same vertex sets), then

the latter is connected.
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Proposition 3.3.
2X
i=0

n2i �
X
i<j

ninj + n :

Proof. First, we claim that for i 6= j, we have:

ninj = # f� 2 H(3) : f(�) = fi; jg g: (3:3:1)

To see this, let D be the dual graph of H, de�ned in the proof of Theorem 2.4. Let Di;j

be the subgraph of D de�ned by:

D
(0)
i;j = f� 2 H(3) : f(�) = fi; jg g ;

D
(2)
i;j = f�� 2 D(H)(2) : f(� \ �) = fi; jg g :

Since f has no heterochromatic 3-edges, Di;j is well de�ned. Indeed, each pair of

vertices colored with i and j appears in exactly two 3-edges, both colored only with i and

j. (In particular, D0;1 is obtained from the graph Df , de�ned in the proof of Theorem 2.4,

by deleting all isolated vertices.)

Since Di;j is clearly regular of degree 2, it has the same number of vertices as of edges.

And because of the bijection (2.5), this number is ninj . Therefore, (3.3.1) holds.

Finally, the 3-edges that appear in (3.3.1) for all choices of fi; jg are a subset of the

3-edges in H, so that: X
i<j

ninj �
n(n� 1)

3
:

And the proposition is a simple restatement of this inequality.

Now we de�ne weighted graphs over the vertex sets Vi as follows. Let Gi
j be the

weighted subgraph of T (Vj) generated by Vi. Explicitly, for vw 2 V
(2)
i , Gi

j has weight

function:

gij(vw) = #fu 2 Vj : uvw 2 H(3)
g

Let q(Gi
j) denote the number of edges of Gi

j , that is, the sum of weights taken over all

vw 2 V
(2)
i .
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Lemma 3.4. With the above notation, and fi; j; kg = f0; 1; 2g, we have:

a) q(Gi
j) � ni

b) q(Gi
j) + q(Gj

i ) = ninj

c) q(Gi
j) + q(Gi

k) � ni(ni � 1)

Proof. (c) follows because every pair vw 2 V
(2)
i is in two 3-edges of H, and then gij(vw)+

gik(vw) � 2, (observe that the di�erence is the number of fig-monochromatic 3-edges on

which vw lies).

(b) is basically a restatement of equation (3.3.1). Indeed, each � in the right hand

side set, counts as an edge in Gi
j if #(� \ Vi) = 2; otherwise it counts for Gj

i .

To prove (a), we see that the degree of any vertex in Gi
j is at least 2. So let u 2 Vi.

Pick any v 2 Vj, and let �� be the edge dual to uv in Di;j (see previous proof). Recall, that

Di;j is a union of cycles, and let C be the component of �. If every  2 C(0) corresponded

to a 3-edge with two vertices in Vj , then T (u) would have a proper cycle component, which

can't happen. Thus, there exist  2 C(0) � H(3) for which #( \ Vi) = 2. The two such

's closest to the edge �� in both directions (which must be di�erent) account for two

edges of Gi
j incident to u.

Proposition 3.5. n0 + n1 � 8 :

Proof. In view of (3.1) and (3.2), we must only rule out the cases n0 = 3 with n1 = 3; 4.

Suppose n0 = 3. From (a) and (c) (of Lemma 3.4) with i = 0, we clearly obtain that

q(G0

1
) = 3. Then, with j = 1, (b) implies

q(G1

0
) = 3(n1 � 1) :

Finally, (a) and (c) with i = 1, give

n1 � q(G1

2
) � n1(n1 � 1)� q(G1

0
) = (n1 � 3)(n1 � 1) ;

which is only possible for n1 � 5.
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Theorem 3.6. The smallest order of an untight 3-cycle is 16.

Proof. From (3.2), (3.3) and (3.5) it follows that the smallest possible untight partitions

are of type 3; 5; 8 and 4; 4; 8, thus yielding the lower bound of 16.

Now we de�ne S3;5;8, an untight 3-cycle of type 3; 5; 8. Let V0 = fa; b; cg, V1 =

f1; 2; 3; 4; 5g and V2 = fa0; b0; c0; 10; 20; 30; 40; 50g. And then, over V =
S
Vi, de�ne S3;5;8

with 3-edges to be the triangles in the three annuli of Figure 1 (which correspond to the

Di;j 's) plus one monochromatic 3-edge (123).

It is not hard to convince oneself that S3;5;8 is a 3-cycle. One should identify (in pairs)

the boundary edges of the three annuli and the triangle (123) of Figure 1, as prescribed

by the labelling of the vertices. Then it is a simple matter to verify that we thus obtain a

triangular embedding of K16 in a closed surface. It has the untight partition V0; V1; V2.

Another way to check that S3;5;8 is indeed a 3-cycle is using Lemma 4.2 below by

observing that it is an example of a \coupling" (see the paragraph preceding (4.2)).

Remark. There is also an untight 3-cycle of type 4; 4; 8. It is C17;0 of Family 2 de�ned in

the next section. It is not isomorphic to S3;5;8 because all the traces of three vertices in C17;0

are connected. It is also true that all the four vertex traces of S3;5;8 are connected. Hence,

though they are both untight, their untight partition types di�erentiate them. There is

yet another triangular embedding of K16 in the same non-orientable surface: Ringel's one

(see [4] pg . 139). It turns out to be tight, and thus not isomorphic to the previous two.

(These facts were proved by exhaustive computer search checking connectedness of traces.)
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S3;5;8 :
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Figure 1.
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4. The coupling construction.

Let H be a 3-chain. The boundary of H, denoted @H, is the graph over the vertex set V

( @H(0) = H(0) ), with an edge uv 2 @H(2) whenever v is an endpoint of the chain TH(u)

(which is clearly a symmetric relation). By de�nition, @H is regular of degree 2, and thus

a disjoint union of cycles.

Let H0 and H1 be 3-chains over the vertex sets V0 and V1 respectively. Let ': @H1 !

@H0 be a graph isomorphism, (this implies that both H0 and H1 have the same order, n

say). Suppose that @H1 is provided with an orientation on each of its cycle components,

and let us denote by
�!
@H1 the corresponding digraph, which is a union of oriented cycles.

De�nition 4.1. The coupling of H0 and H1 along ' is the 3-graph eH = H0 �' H1 with

vertex set eV = V0 t V1, (the disjoint union of the vertex sets), and 3-edges de�ned by:

c1) uvw 2 H
(3)
0 ) uvw 2 eH(3).

c2) xyz 2 H
(3)
1 ) '(x)yz 2 eH(3), x'(y)z 2 eH(3) and xy'(z) 2 eH(3).

c3) �!xy 2
�!
@H

(2)

1
) '(x)'(y)y 2 eH(3) and xy'(y) 2 eH(3).

For a 3-chain H, the coupling of H is H �H = H �id H where id is the identity map of

@H, which is supposed to have a preferred orientation.

As examples, observe that the coupling of a triangle (n = 3), yields the 3-cycle cor-

responding to a triangular embedding of K6 in the projective plane. Or consider S3;5;8

de�ned in Theorem 3.6. Observe that the subhypergraph generated by fa; b; c; 1; 2; 3; 4; 5g,

that is, the 3-edges of the bottom of Figure 1, is a 3-chain, H say. Its boundary consists

of two cycles, which oriented (a; b; c) and (1; 5; 3; 2; 4), yield S3;5;8 = H �H. The primes

on the other eight vertices of S3;5;8 obey to the necessity of taking two disjoint copies of

the vertices to perform the coupling of a 3-chain with itself.

As a matter of notation, vertices in H0 are denoted by u, v and w; while x, y and

z are used for vertices in H1. Also, we abbreviate THi
(i = 0; 1) and TeH by Ti and eT

respectively.
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Lemma 4.2. eH = H0 �' H1 is a 3-cycle.

Proof. We must show that all one-vertex traces of eH are cycles, which gives us two cases.

Case 1 : u 2 V0. From (c1), we have a canonical inclusion H0 ,! eH. And thus, we have

a subchain T0(u) ,! eT (u).
Let x = '�1(u). Then, (c2) gives us another subchain T1(x) ,! eT (u). Thus far,

we have accounted for all the vertices in eT (u) except x. The orientation of
�!
@H1 gives us

operators + and � on V1 (and, through ', on V0), de�ned by
��!
x�x;

��!
xx+ 2

�!
@H

(2)

1
. Observe

that x� and x+ (u� and u+) are the endpoints of T1(x) (T0(u)). Then, the three possible

appearances of u in the right hand side of (c3) (namely, u�ux; x�xu and uu+x+) give us

the edges that complete the cycle eT (u); see Figure 2.

u+u-

x x- x+

T (u)o

T (x)
1

Figure 2.

Case 2 : x 2 V1. As before, let u = '(x). Let �: eV ! V1 be the canonical projection; that

is, �(y) = y for y 2 V1, and �(v) = '�1(v) for v 2 V0. Observe that � j eV � fx; ug gives a

2-fold graph covering �: eT (x)� u! T1(x) , which degenerates only over x+. Indeed, each

edge yz 2 T1(x) is covered twice, by '(y)z and y'(z), because of (c2). When we add u

and the two edges it carries because of (c3), we obtain the cycle eT (x); see Figure 3.

u u- u+

x+x- y z.   .  . .   .  .
T (x)
1

:

ϕ(  )y ϕ(  )z
Figure 3.

Since no other edges may appear in eT (x), this concludes the proof.

13



Family 2: Iterated prime surfaces. Let p be any prime number. Let Cp;0 = Lp;�1�Lp;�1,

where Lp;�1 = Lp is the 3-chain of Family 1. By the preceding lemma, Cp;0 is a 3-cycle of

order (p� 1). Now we will iterate k � 0. For this, take the 3-chain

Lp;k = Cp;k � x ;

where x is a vertex of Cp;k, and then take the 3-cycle

Cp;k+1 = Lp;k � Lp;k :

In principle, the choice of a vertex to be deleted and of an orientation on the boundary

to perform a coupling, a�ect the isomorphism class of the iterated prime surfaces. That is,

di�erent choices may lead to non-isomorphic hypergraphs. For our present purposes we do

not need to make these choices precise. Thus, Lp;k and Cp;k are de�ned only as elements

of non-void classes, because the choices can obviously be made for all k � 0.

Observe also that the family of 3-cycles fCp;kg may be extended to k = �1, when p

is connected. Indeed, for arbitrary p the components of @Lp correspond to the orbits of

the group h2i � Z�p acting on L
(0)
p = Z�p=f1;�1g (the operator + in the proof of Lemma

4.2 may be taken to be multiplication by 2 in this case). So that when @Lp is connected

(that is, when p is connected, recall (1.3)) we can annihilate the boundary by adding a

new vertex, together with the 3-edges de�ned by that vertex and the original boundary

edges; we thus obtain a 3-cycle Cp;�1 to initiate the iteration process. However, in the case

@Lp is not connected, there exists an in�nite family of untigtht 3-cycles.

Lemma 4.3. If @H0
�=' @H1 is not connected then eH = H0 �' H1 is not tight.

Proof. Observe that eT (V1) = @H0. Indeed, the inclusion H0 ,! eH gives us equality at

the vertex level. And the only 3-edges of eH with exactly one vertex in V1 arise from the

�rst part of (c3), giving @H0 at the trace level. Now, the Basic Lemma 2.2, asserts that

eH is untight if any of its traces is untight.
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Since L17 has two boundary components, ([[1]]; [[2]]; [[4]]; [[8]]) and ([[3]]; [[6]]; [[5]]; [[7]]), then

C17;0 = L17 � L17 is untight, having the minimum possible order (by Theorem 3.6). Its

untight partition is of type 4; 4; 8 as mentioned in Section 3.

Now we proceed to establish su�cient conditions for a coupling to be a tight 3-cycle.

Theorem 4.4. Let H0 and H1 be tight 3-chains with tight boundaries. Then, for any

isomorphism ': @H1 ! @H0 and any orientation of @H1, eH = H0 �' H1 is tight.

Proof. Consider an arbitrary 3-coloring of H with colors 1, 2 and 3. In case all three

colors occur in V0, there certainly can be found a heterochromatic 3-edge in the tight 3-

chainH0 ,! eH . Assume one of the colors, say 3, is omited from V0. Then a heterochromatic

3-edge still can be found provided eT (X) is connected, where X is the set of the vertices

of V1 colored with 3. We shall now prove that eT (X) is connected for any subset X of V1,

by exposing a connected spanning subgraph G of eT (X). Since eT (V1) = @H0 is connected

by hypothesis, we shall assume X 6= V1.

Let U = '(X), and consider the induced subgraph of eT (X) generated by U ; denote it

G0 = hU : eT (X) i : Since the only edges it has, come from the �rst part of (c3), we obtain

that G0 = hU : @H0 i : Thus, being an induced proper subgraph of an oriented cycle, G0

is a union of oriented chains (some of them possibly of length 0).

On the other hand, consider the graph G1 with vertex set eV �X � U , and with two

edges '(y)z and y'(z) for every edge yz 2 T1(X)(2). Clearly G1 is a subgraph of eT (X).

From the construction, G1 comes equipped with a projection

�:G1 ! T1(X) ;

giving it the structure of an alternating 2-fold covering. Because H1 is tight, T1(X) is

connected; thus, we may conclude that G1 is connected unless T1(X) is bipartite. But in

this case, G1 has exactly two components transversal to each �ber.

Finally, let G be the union of G0 and G1, plus the edges that appear inside eT (X)

because of (c3). G is a spanning subgraph of eT (X), so that we are left to prove it is

connected.
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Let u = '(x) be a vertex of G0 which is the initial end-point of one of its components.

Using the notation of Lemma 4.2, let u� precede u in
�!
@H0; observe that u

� 2 G1. Since

x = '�1(u) 2 X, (c3) gives us the edges u�u and x�u in G, (Figure 4).
X

x

G
0

uu-

x-

1
G

Figure 4.

Thus, the two possible components of G1 have been connected through u, and the chosen

chain component of G0 has been attached to G1 by its initial end-point. Since this holds

for any component of G0, it proves that G is connected. The proof is complete.

Corollary 4.5. Let H be a 3-chain. Then, the following are equivalent:

a) H and @H are tight.

b) H �H is tight.

Proof. a) b : Theorem 4.4.

b) a : By Lemma 4.3, @H is tight. And H is tight because we clearly have a quotient

map H �H ! H, (see (2.3) of [1]).

With this result and the examples of Family 2, we may conclude our work from the

Introduction.

Proof of Theorem 1. Since Lp = Lp;�1 is tight, and so is its boundary for connected

primes, we have that Cp;0 is tight. And Cp;�1 is also tight because it was obtained by

attaching a vertex with a tight trace to a tight 3-graph.

Proof of Theorem 2. For nonconnected primes, Lemma 4.3 implies that Cp;0 is not

tight. If we delete any vertex from an untight 3-cycle we obtain an untight 3-chain (see

previous proof). From this fact and Corollary 4.5 we conclude inductively that Lp;k and

Cp;k, for k � 0, are untight.
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Finally, observe that if we could add to Corollary 4.5 a third item, c) (H �H) � x is

tight for some x 2 (H �H)(0) , then an inductive proof similar to that of Theorem 2 could

be used to strengthen Theorem 1. This would require a careful choice of the vertices to be

deleted in the iteration process.

Conjecture 4.6. Given a connected prime p, there exists k(p) � 0, for which we can make

Lp;k be tight for all k(p) � k � 0, by judiciously choosing the vertices x to be deleted

while constructing the sequence fLp;kgk�0.

In particular, we suspect that Lp;0 = (Lp �Lp)� x is tight when x is chosen from the

second summand. It would be interesting to determine for which connected primes is this

conjecture true, and whether k(p) is bounded.

5. On orientability.

Regardless of the summands, the coupling eH = H0 �' H1 is non-orientable. Indeed, for

any 3-edge xyz 2 H
(3)
1 , the simplicial path x; y; z; x reverses orientation in eH . To see

this, observe from the trace of x (Figure 3), that if xy'(z) 2 eH(3) is given the orientation

(x; y; '(z)), say, then x'(y)z gets the orientation (x; z; '(y)) if x is to be locally oriented

(and thus, eT (x)). Then, the same argument based on y and z would give opposite orien-

tations to '(x)yz. This is illustrated in Figure 5 which presents the three 3-edges of eH
arising from xyz 2 H

(3)
1 . It remains as an open problem whether there exists an orientable

untight 3-cycle.

x

y z

ϕ(  )yϕ(  )z

ϕ(  )x
Figure 5.
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